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Abstract 
Background and Aim: Stem cells due to their great potential can help in establishing tis-
sue engineering as a new treatment modality. Numerous studies have evaluated the effect
of various chemical and mechanical stimuli on these cells. In this respect, the role of me-
chanical loads is undeniable. This systematic review evaluated studies on the effects of 
mechanical loads on differentiation of mesenchymal stem cells to different cell lineages  
published in the past 12 years. 

 Materials and Methods: In this systematic review, PUBMED database was used to   
 search key words namely “human mesenchymal stem cell”, “strain,”, “mechanical load  
 ing,” and “differentiation”, in the literature published from 2000 to July 2012.  The inclu 
 sion criteria were the publication year, language of articles, type of cells and study object 
 tives. 
Results: In total, 46 articles were evaluated qualitatively. In most studies, applied me-
chanical loads led to the anticipated differentiation. Studies showed that the combination 
of two forces increased differentiation. The amount of applied strain also influenced the
type of differentiation. 
Conclusion: This review indicated that advances made on the effects of mechanical loads 
on stem cells  can be  used  for improving tissue engineering treatments. 
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Introduction  
Tissue engineering has shown that instead of using 
artificial materials, we may induce regeneration of 
tissues [1]. Dental researchers hope to regenerate 
temporomandibular joint, alveolar bone, periodon-
tal ligament, enamel, dentin and even a whole 
tooth [1]. 
Langer et al. defined tissue engineering as an in-
terdisciplinary science using both engineering 
principles and biology for the development of bio-
logical organs that need to be repaired or healed 
[2]. Tissue engineering is based on 3 components 

of mature stem cells, growth factors and extracellu-
lar matrix scaffold [3].  
Adult stem cells are widely used as a cell source 
for tissue engineering and regenerative medicine 
because they can be procured from the autologous 
sources and can be isolated from bone marrow, 
dental pulp and adipose tissue and proliferate in the 
laboratory. Moreover, under in-vitro conditions, 
these cells are capable of differentiating into dif-
ferent cell lines namely osteoblasts, chondroblasts, 
myoblasts, adipocytes and ligament cells [4]. In-
duction of differentiation in these cells at the mo-
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lecular level requires a specific process with strong 
programming. Thus, studies have provided various 
environmental conditions to affect differentiation 
of human mesenchymal stem cells (such as in-
volvement of different hormones, various load ap-
plications, cytokines, growth factors, insulin, ster-
oids, BMPs and etc.) [5]. 
It has been confirmed that cells and tissues in their 
innate environment are exposed to mechanical 
loads such as compressive, tensile and shear forces 
influencing their development and natural function 
[6]. Mechanical loads are involved in regulation of 
tissue homeostasis and in development, function 
and repair of the main components of the musculo-
skeletal system namely bones, tendons, ligaments, 
teeth and cartilages [7]. Numerous studies have 
shown that mechanical loads stimulate the synthe-
sis of extracellular matrix and may even improve 
the mechanical properties of the formed tissues [8]. 
In contrast, it has been demonstrated that absence 
of load can lead to tissue atrophy and bone loss [9]. 
Mechanical loads regulate fetal growth and devel-
opment. Studies on completely paralyzed fetus of 
birds have detected specific developmental defects 
in the mandible and large bones indicating the im-
pact of muscle contraction and consequent loads 
on bone development and stated that loads are nec-
essary for correct morphogenesis of tissues [10]. 
As the result, tissue engineering currently uses me-
chanical loads as a tool for the formation of carti-
lage, ligament, muscle, cardiac muscle and bone 
under in-vitro conditions [11-16].  
Some loads are related to the physical conditions 
of the understudy cells. For instance, cyclic uniaxi-
al loads are effective for activation of 
mechanotransduction cascades and induction of 
differentiation of mesenchymal stem cells into 
smooth muscle cells. Some loads regulate the ex-
pression of matrix molecules without changing the 
expression of cartilage and bone differentiation 
markers such as type II collagen and alkaline 
phosphatase (ALP) [17]. To date, no review study 
evaluated the effect of various mechanical loads on 
differentiation of stem cells. This study aims to 
introduce various mechanical loads used in studies 
and review the effects of these loads on differentia-
tion of human mesenchymal stem cells. 

Materials and Methods  
For this review study, we searched PubMed data-
base using “human stem cells”, “differentiation”, 
“strain” and “mechanical loading” key words. The 
inclusion criteria were year of publication from 
2000 to June 2012, English and French articles, 
studies on mature human mesenchymal stem cells 
and use of mechanical loads to assess cell differen-
tiation. Studies on animal models or evaluating 
other effects of mechanical loads on cells were 
excluded.  
 
Results  
Our search yielded 848 articles out of which 805 
were excluded after evaluation of title and ab-
stracts. The excluded articles were studies on ani-
mal stem cells, those outside the selected time pe-
riod, articles in languages other than English and 
French and those evaluating the effect of mechani-
cal loads on cell proliferation. The remaining 48 
articles were thoroughly studied out of which 2 
were excluded due to inappropriate study design 
and lack of control group. A total of 46 articles 
were eventually evaluated and categorized based 
on the type of load used.  
Loads used in studies: 
The load can be applied from any angulation or 
direction. Usually, several loads are combined 
causing complex stresses in a structure. Stresses 
used in different studies can be divided into three 
main groups of tensile, compressive and shear. On 
the other hand, in terms of being constant or varia-
ble, loads can be divided into two groups of static 
and dynamic. In terms of duration of load applica-
tion, they can be categorized into 3 groups of inter-
rupted, intermittent and continuous. Static load is 
exerted constantly for a specific time period and 
does not change during this time; whereas, dynam-
ic loads change. This change can be interrupted. 
For example, load can be applied to cells once and 
does not repeat. Dynamic load may be intermittent 
and applied to cells at specific time intervals. Dy-
namic load may also be applied continuously at a 
specific frequency to cells [18].  
Tensile load: 
Tension is the result of two loads applied along a 
straight line but at completely opposite directions; 
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or when an object is fixed at one side and is 
stretched in a direction opposite to the fixed side  
resulting in increased length of the specimen [19]. 
Tensile forces may be uniaxial or equibiaxial. In 
uniaxial tensile forces, the scaffold is stretched at 
one direction; while in equibiaxial load applica-
tion, the scaffold is stretchedat all directions [18]. 
Of 46 articles evaluated qualitatively, 26 used ten-
sile loads for differentiation (Table 1). Of these 26 
studies, one study used tensile load along with 
magnetic force and another one compared cyclic 
tensile load with continuous load. Only in 2 studies 
load application did not lead to the desired differ-
entiation and in one study load application pre-
vented the differentiation of cells. Two studies 
showed that the amount of applied strain affected 
the type of differentiation of stem cells. One study 
confiremd that equibiaxial tensile force prevented 
myogenic differentiation; whereas, uniaxial load 
stimulated it. 
Compressive load:  
Compression results from two loads at the same 
direction along a straight line or when an object is 
fixed at one side and is compressed at the opposite 
side towards the fixed side [19]. Of all the evaluat-
ed articles, 13 had used compressive forces (Table 
2). Two articles used a combination of compres-
sive and shear loads for differentiation. Combina-
tion of compressive and shear loads significantly 
increased the differentiation of chondrogenic 
markers. In all articles in this group, load applica-
tion led to the desired differentiation.  
Shear load:  
Shear results from two parallel loads that are not 
applied along a straight line [19]. Of 46 studies 
evaluated, 7 used shear loads (Table 3). In this 
group, application of mechanical load at different 
frequencies led to the desired differentiation. In 
one study, interrupted and continuous shear loads 
were compared and interrupted load was found to 
be more effective.

Discussion 
Overall, chemical induction is the most common 
method for differentiation of stem cells. However, 
it has been understood that tissue engineering in 
tissues under load application requires mechanical 
stimulation [61, 62]. Comparison of reviewed arti-
cles revealed that mechanical loads applied were 

mainly dynamic and uniaxial and only two articles 
used static equibiaxial loads. Although several 
studies have shown positive effects of static loads 
[63], dynamic loads can better simulate in-vivo 
conditions. Review of these 46 articles showed that 
the efficacy of dynamic loads for cell differentia-
tion was greater than that of static loads. In the ma-
jority of studies, the effect of mechanical loads 
caused the expected differentiation. 
Studies showed that the combination of both loads 
increased differentiation. Also, the percentage of 
applied strain can affect the type of differentiation. 
The drawback of these studies was that the period 
of application of mechanical strain on cells was 
widely variable. For instance, for evaluation of 
osteogenic differentiation of stem cells one study 
used 3% continuous tensile strain for 2 weeks. In 
another study, tensile strain for a few hours or dy-
namic load was applied. Other studies used shear 
or compressive strains at different magnitudes and 
time intervals. Thus, comparison of results is not 
feasible and we cannot definitely state that what 
type of mechanical load at what frequency and for 
how long will lead to the desired differentiation.  
The most commonly used stem cells in the men-
tioned 46 studies were bone marrow cells used in 
36 articles. Dental pulp stem cells were used in 5, 
adipocyte stem cells in 4 and umbilical cord and 
endometrial stem cells were used each in one arti-
cle. These cells were cultured on various natural 
and synthetic polymer and ceramic 3D scaffolds, 
composite scaffolds, hydrogels and demineralized 
bone. However, in the majority of studies (17 arti-
cles) cell carrier was a silicon membrane or a flex-
ible plate that was not 3D and cells were grown on 
it in a single layer. Considering the composite 
structure and 3D nature of bone this issue can be 
considered as a limitation of these studies. Another 
important issue is that the osteogenic and 
odontogenic effects of dentin or demineralized 
bone have been well confirmed [64]. In some other 
studies a scaffold with osteogenic property was 
used [50] and the cumulative effect of scaffold and 
the applied force was considered altogether. Since 
the first interaction between the cells and scaffold 
occurs through cell adhesion, surface characteris-
tics of the substrate are the main key in success of 
tis 
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sue engineering [65]. Cell adhesion leads to the attachment of cells to the substrate and provides 

Authors 
Year of 

publication Stem cell 
source 

Applied 
load 

Scaffold 
or carrier 

Surface treatment 
of scaffold or 

carrier 

Type of  

differentiation 
Results 

Leong et al, 
(20) 2012 Bone mar-

row 

Uniaxial, 
cyclic, 
tensile 

Modified 
polycaprola
ctone (PCL) 

- Neurogenic 

Cyclic stretching of cells was done at 
0.5%, 2% or 3.5% amplitudes and 
0.5, 1 or 1.5Hz frequencies for 8 h. 
Significant upregulation of neurogen-
ic genes’ expression occurred at 0.5% 
strain amplitude and 0.5 Hz frequen-
cy.Rac1 but not RhoA was activated 
at this load. 

Tabatabaei 
et al, (21) 2012 

Dental pulp 
and endome-

trium 

Uniaxial, 
equibiaxial, 

tensile 
Silicon Collagen Osteogenic 

Application of 3% static tensile load 
for 2 weeks discontinued the expres-
sion of CD90 marker (expressed in 
stem cells) in the stretched cells. 

Kreja et al, 
(22) 2012 

Bone mar-
row and 

fibroblasts 

Uniaxial, 
cyclic-

interrupted, 
tensile 

Polylactic 
acid (PLA) - Ligament 

Application of mechanical load had 
no effect on the expression of genes 
for ligament markers on undifferenti-
ated mesenchymal stem cells but 
increased the expression of type I and 
II collagen, fibronectin and tenascinC 
(ligament matrix markers) in fibro-
blast cells derived from anterior 
cruciate ligament 

Haghighipo
ur et al, 

(23) 
2012 Bone mar-

row 

Uniaxial, 
cyclic, 
tensile 

Silicone 
with/withou

t IGF-1  

(insulin-like 
growth 

factor 1) 

Collagen Myogenic 

After application of 10% cyclic uni-
axial strain at 1 Hz, different levels of 
MyoG mRNA and MyoD between 
groups indicated initiation of myo-
genic differentiation due to mechani-
cal strain. Comparison of levels of 
Myf5, MyoD, MyoG and Myf6 
mRNA among test groups revealed 
that a combination of mechanical 
loads and growth factorsleads to the 
highest expression of myogenic genes 

Zhang et al, 
(24) 2012 Bone mar-

row 
Continu-

ous, cyclic - - Osteogenic 

Application of 10% continuous mechanical 
strain at 1 Hz decreased the proliferation, 
induced the osteogenic differentiation of 
cells through activation of Runx2 and 
increased alkaline phosphatase activity and 
expression of ALP, collagen type I and 
osteocalcin mRNA genes. Level of phos-
phorylation of ERK ½ increased at the 
onset of loading. 

Glossop et 
al, (25) 2010 - 

Tensile, 
uniaxial + 
magnetic 

force 

- - -

Application of two mechanical loads 
for an hour during a 24h period had 
no effect onexpression of IL-1B or 
MAP3K. 

Cai et al, 
(26) 2010 Dental pulp 

Uniaxial, 
cyclic, 
tensile 

Polyeth-
ylene - Osteogenic, 

odontogenic 

Load application inhibits the gene 
expression of osteogenic markers and 
proteins namely BMP2, osteocalcin, 
and alkaline phosphatase. Also, gene 
expression of odontogenic markers 
like DSPP, DSP and BSP was inhib-
ited 

Friedl et al, 
(27) 2009 Bone mar-

row 

Uniaxial, 
cyclic, 
tensile 

Silastic 
dishes Fibronectin Osteogenic 

Application of 3000 mustrainstrain at 
1Hz frequency 6 times a day for 72h 
significantly increased the expression 
of osteogenic marker genes and ALP 

Table 1: Studies evaluating the effect of tensile loads on differentiation of stem cells 
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activity. Linear correlation analysis 
showed a correlation between the 
phenotypic strain response and do-
nor’s body mass index (r=-0.91, 
P<0.001) 

Huang et al, 
(28) 2009 Bone mar-

row 
Cyclic, 
tensile 

Flexcell 
tension 
system 

Type I collagen, 
vitronectin, 

fibronectin, laminin 
Osteogenic 

Application of 3% load at 0.1 Hz 
activated the focal adhesion kinase 
(FAK)phosphorylation, upregulated 
the transcription and phosphorylation 
of core-binding factor alpha-1, and 
increased ALP activity and deposi-
tion of mineralized matrix. Among 
the ECM proteins, fibronectin and 
lamininhadthe highest supporting 
effects on osteogenic differentiation 
induced by stretchingcompared 
totype I collagen and vitronectin 

Ghazanfari 
et al, (17) 2009 Bone mar-

row 
Cyclic, 
tensile Silicon Type I collagen Myogenic 

Application of 5% and 10% stretch 
showed that proliferation of cells 
increased by increasing the amplitude 
of load. Strain application regulated 
smooth muscle alpha-actin, reorient-
ed actin fibers and caused differentia-
tion of cells to smooth muscle cells 
without the need for growth factors 

Diederichs 
et al, (4) 2010 Adipose 

tissue 
Strain, 
cyclic 

Collagen 
silicone - Osteogenic 

Application of 5% strain at 1Hz for 
15min increased the activity of ALP, 
osteocalcin, osteopontin and BMP 
2/4 indicating osteogenic differentia-
tion. Long-term strain application 
(after the first 15 min, load was repet-
itively applied for more than 8h) 
decreased these effects.  

Hanson et 
al, (29) 2009 Adipose 

tissue 

Cyclic, 
continuous, 
interrupted, 

tensile 

Type I 
collagen Osteogenic medium Osteogenic 

Two cell lines after 14 days of culture 
in osteogenic medium were subjected 
to tensile strain with one cell line 
depositing approximately nine times 
as much calcium as the other.One 
group received 10% strain at 1 Hz 
and the other 10% strain, 1 Hz, 10s 
rest after each cycle. Similar results 
were obtained in both groups alt-
hough cyclic tensile strain had 
stronger osteogenic effect on cells 
with high calcium deposition.  

Chen et al, 
(7) 2008 Bone mar-

row 
Cyclic, 
tensile 

Flexible 
bottomed 

plates 
Type I collagen Osteogenic 

ligament 

Application of 3%, 6% and 10% strain 
at 1Hz frequency for 8 and 48h yielded 
the following results: significant reduc-
tion in expression of cell proteins, in-
creased expression of matrix metallo-
proteinase 3 regardless of the magnitude 
of load, increased osteoblastic markers 
(Cbfa1, alkaline phosphatase and 
osteocalcin) in response to 3% strain but 
increased ligament markers (type I and 
type III collagen and tenascin-C) in 
response to 6% strain. Cbfa1 and ALP 
increased in the first 8h but decreased 
afterwards and remained unchanged. 
Type I and type III collagen mRNA and 
tenascin-C significantly increased in 
10% strain after the first 48h and re-
mained unchanged in the 48h rest. 

Han et al, 
(30) 2008 Dental pulp Cyclic, 

tensile Silicon Atelocollagen (ethanol 
+ collagen) 

Myogenic, 
osteogenic 

In the first 4 days, proliferation in 
response to 5% and 8% strain was 
equal. RT-PCR analysis showed that 
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strain application increased the ex-
pression of collagen and osteopontin 
and decreased expression of smooth 
muscle alpha actin. FACS analysis 
found no change in CD105 expres-
sion but CD90 expression decreased 
in response to 8% strain. 

McMahon 
et al, (31) 2008 Bone mar-

row 
Cyclic, 
tensile 

Collagen+ 
glycosa-

minoglycan 
- Chondrogenic 

10% strain at 1Hz frequency for 7 
days increased the synthesis of 
glycosaminoglycans 

Friedl et al, 
(27) 2007 Bone mar-

row 
Cyclic, 
tensile Silastic Fibronectin Osteogenic, 

chondrogenic 

Strain application significantly in-
creased the expression of genes relat-
ed to primary chondrogenic and 
osteogenic markers (ALPL, SPPT, 
SPARC, Runx2, DCN, LUM and 
Sox9) and increased the activity of 
ALP (P<0.051 standard error of 
mean: +38%±12) 

Ward et al, 
(32) 2007 Bone mar-

row Tensile Type I 
collagen - Osteogenic 

Strain application increased mineral-
ized matrix and activated ERK1/2. 
Addition of MEK inhibitor decreased 
the activity of ERK leading to de-
creased expression of osteogenic 
genes, decreased production of min-
eralized matrix and blocking of the 
effect of applied loadon decreasing 
the expression of non-osteogenic 
markers. 

Sumanasin
ghe et al, 

(33) 
2006 Bone mar-

row 

Uniaxial, 
cyclic, 
tensile 

Collagen 
gel - Osteogenic 

A significant increase occurred in 
expression of BMP2 in 8% strain at 
days 7 and 14 compared to the con-
trol group. Increased BMP2 was seen 
in 12% strain; which was significant 
at day 14. 

Wiesmann 
et al, (34) 2006 Bone mar-

row 

Uniaxial, 
cyclic, 
tensile 

Polycar-
bonate 

Osteoconductive 
medium Osteogenic 

14 days of 2000 mustrain, 200 cycles 
per day at 1 Hz led to expression of 
type I collagen and osteocalcin in 
response to mechanical stimulation. 
Calcium content increased in both 
test and control groups but at day 21, 
calcium content of the test group was 
more than control group. 

Lee et al, 
(35) 2007 Adipose 

tissue 

Uniaxial, 
cyclic, 
tensile 

Flexible 
plate Type I collagen Myogenic 

Application of 10% strain at 1Hz 
inhibited the proliferation of cells and 
led to orientation of cells and F actin 
cytoskeleton perpendicular to the 
direction of strain. Application of 
strain in absence of TGF B1 de-
creased the expression of primary 
markers of smooth muscle cells (a 
SMA and h1-calponin) 

Kang et al, 
(36) 2012 Umbilical 

cord 
Uniaxial, 

cyclic 
Flexible 

plate Osteogenic medium Osteogenic 
differentiation 

0%, 5% and 10% strains were applied. 
By increasing the strain, CD73, CD90 
and CD105 surface antigens decreased. 
Groups under strain produced more 
elastin and sulfatal glycosaminoglycan 
than the control group. RT-PCR analy-
sis showed that mechanical stimulation 
increased the expression of mRNA for 
markers of osteoblastic differentiation. 

Kimelman- 2011 Bone mar- Dynamic Hydrogel - Osteogenic Load application increased cell me-
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Bleich et al, 
(37) 

row differentiation tabolism by 6.8 times, ALP activity 
by 12.5 times, BMP-2 secretion by 
18.2 times and formation of mineral-
ized tissue by 1.72 times in the hy-
drogel environment compared to the 
control group. 

Haasper et 
al, (38) 2008 Bone mar-

row 
Cyclic, 

longitudinal 

Flexible 
silicon 
plates 

- Osteogenic 
differentiation 

Application of 2% and 8% strain for 
2h three times a day for 3 days and 
evaluation at days 4 and 7 yielded the 
following results: Cbfa1 level was 
significantly different at various time 
points. At day 4, differentiation in the 
group subjected to strain was more 
than the dexamethasone group. 

Simmons et 
al, (39) 2003 Bone mar-

row 
Cyclic, 

equibiaxial Silicon Type I collagen Osteogenic 

Strain inhibited the proliferation and 
increased the mineralized matrix by 
2.3 times compared to the control 
group. Mechanical stimulation acti-
vated ERK1/2 and P38 mitogen acti-
vated protein kinase but had no effect 
on the activity or C-Jan N-terminal 
phosphorylation. 

Sen et al, 
(40) 2008 Bone mar-

row 

Strain, 
biaxial, 
cyclic 

Bioflex 
plate Collagen Osteogenic 

2% strain for 5 days (6h/day) despite 
the placement of cells in adipogenic 
differentiation medium prevented 
adipocyte differentiation and despite 
being in this medium cells showed 
markers of osteoblastic differentia-
tion. 

Park et al, 
(41) 2004 Bone mar-

row 

Cyclic, 
uniaxial, 

equibiaxial 

Silicone 
membrane 

Type I collagen/ gela-
tin Myogenic 

Application of equibiaxialstrain re-
duced smooth muscle a-actin and 
smooth muscle 22a after one day and 
decreased alpha actin in stress fibers. 
Application of uniaxial load in-
creased the expression of smooth 
muscle a-actin and smooth muscle 
22a after one day and caused transi-
ent increase of type I collagen. Thus, 
uniaxial load was more effective for 
myogenic differentiation. 

I(strain); 2D (Two�dimensional); 3D (Three�dimensional); ���(�olla�en); ��� (�l��osamino�l��an); �D �5 (�rowth and differentiation fa�tor 5); #�� 
(#ol�(�a$rola�tone)); #��� ($ol�( � ��a�tide%�l��olide) a�id); &' (&itrone�tin);  ' ( i(rone�tin); �' (�aminin); #��� (#ol�( � ��a�ti�) a�id); D)* (De+a�
methasone); ��# (�l,aline $hos$hatase); �#' (�steo$ontin); -.# (-one mor$ho�eni� $rotein); ��* (��s�l o+idase); -/# (-one sialo$rotein); ��' 
(�steo�al�in); RU'*2 (Runt�related trans�ri$tion fa�tor 2); ##�R � (#ero+isome $roliferator�a�ti3ated re�e$tor��amma)4 

Authors Year of 
publication 

Stem cell 
source 

Applied 
load Scaffold 

Scaffold 
surface 

treatment 

Type of dif-
ferentiation Results 

Michalopoulo
s et al, (42) 2012 Bone marrow Cyclic, 

compressive 
Collagen, 
alginate - Osteogenic 

Osteogenic differentiation was observed in 
10% strain (increased Cbfa 1 at days 7 and 
21) and chondrogenic differentiation oc-
curred in 15% strain (increased expression 
of Cbfa 1, Sox9 and Aggrecan) 

Bian et al, 
(43) 2012 Bone marrow Dynamic, 

compressive 
Hyaluronic 

acid, hydrogel - Chondrogenic 

Load application increased the glycosa-
minoglycan and collagen of the medium. 
This increase at high cellular density medi-
um (60 million cells/ml) was greater than 
in the low density medium (20 million 
cells/ml). Load application uniformed 
spatial distribution of cells in chondrogenic 
matrix in both densities and significantly 
decreased hypertrophic markers and degree 

Table 2: Studies evaluating the effect of tensile loads on differentiation of stem cells 
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of calcification. 

Schatti et al, 
(44) 2011 Bone marrow 

Dynamic, 
shear/ com-

pressive 

Fibrin, polyu-
rethane, com-

posite 
- Chondrogenic 

Shear and compressive loads were capable 
of inducing chondrogenic induction inde-
pendently but when combined significantly 
increased the expression of chondrogenic 
genes. Type I collagen and glycosamino-
glycan were present in the two groups with 
only one type of applied load (shear or 
compressive) 

Sittichokechai
wut et al, (45) 2010 Bone marrow Dynamic, 

compressive 

Polyurethane 
with/without 

dexame-
thasone 

- Osteogenic 

Collagen content was significantly higher 
in groups subjected to loads compared to 
the control group (P<0.01). No significant 
difference was found in ALP activity, 
collagen content and calcium production 
between groups without load and dexame-
thasone supplement and the group receiv-
ing load without dexamethasone. 

Li et al, (46) 2010 Bone marrow Cyclic, 
compressive 

Fibrin-
biodegradable 
polyurethane 
along with 

TGF-B1 at 2 
concentrations 
of 0.1 ng/ml 
and 10ng/ml 

- Chondrogenic 

Based on the concentration of TGF-B1 in 
the medium, mechanical load stimulated 
hMSCs chondrogenic differentiation. 
Lower concentration of TGF-B1 had great-
er effect on gene expression. In absence of 
TGF-B1, mechanical load stimulated gene 
transcription and synthesis of TGF-B 1&3 
protein.  

Kisiday et al, 
(47) 2009 Bone marrow Dynamic, 

compressive 
Agarose  

hydrogel 
- Chondrogenic 

Application of load for 12h/day in absence 
of TGF-B1 significantly increased proteo-
glycan synthesis compared to the control 
group without TGF-B. Level of H-proline 
and S-sulfate in the test group was 2% and 
14% higher, respectively than the control 
group with TGF-B but level of glycosa-
minoglycan was 67% higher. 

Pelaez et al, 
(48) 2009 Bone marrow Cyclic, 

compressive 

Fibrin gel at 3 
concentrations 

of 8, 40 and 
60mg/ml 

- Chondrogenic 

10% load was applied at 0.1, 0.5, and 1.0 
Hz frequency and viability of cells was 
maintained at over 0.5 Hz frequency and 
40 mg/ml fibrin concentration. 

Campbell et 
al, (49) 2006 Bone marrow Dynamic, 

compressive 

Alginate+ 
10ng/ml 
TGFB 

- Chondrogenic 

Application of 15% interrupted load at 1Hz 
frequency in presence of 10ng/ml TGFB 
for 8 days increased the expression of 
chondrogenic markers (type I and II colla-
gen, Sox9 and aggrecan) compared to the 
control group without TGFB and in ab-
sence of load. 

Mauney et al, 
(50) 2004 Bone marrow Compressive 

Partially  

demineralized 
bone 

- Osteogenic 

Application of 3% mechanical load at 
5mm/min and 250 cycles/day for 16 days 
along with 10nM concentration of dexame-
thasone caused osteogenic differentiation 
with significant increase in ALP activity 
and mineralized matrix compared to the 
control group 

Yu et al, (51) 2009 Dental pulp 

Compres-
sive, hydro-
static, dy-

namic 

Glass lamella Poly-L-
lysine Odontogenic 

Application of different hydrostatic pres-
sures at 0.5 Hz frequency for 1, 2, 3 or 4h 
decreased the number of cells and in-
creased differentiation. 

Angele et al, 
(52) 2004 Bone marrow Cyclic com-

pression 

Composite, 
hyaloronan, 

gelatin 
- Chondrogenic 

Application of load for 4h/day for 7 days 
increased the content of collagen and pro-
teoglycan.  

Wagner et al, 
(53) 2008 Bone marrow 

Cyclic hy-
drostatic 

compression 

Collagen 
sponge - Chondrogenic, 

osteogenic 

Application of one MPa load at 1Hz fre-
quency (4h/day) for 10 days increased 
chondrogenic markers but no change oc-
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curred in expression of RUNX2. 

Ogawa (54) 2009 Bone marrow 
Cyclic hy-
drostatic 

compression 

Collagen 
scaffold - Chondrogenic 

Application of 0.5 MPa load at 0.5 Hz 
frequency for 7 days increased 
chondrogenic markers after 4 weeks. 

Finger et al, 
(55) 2007 Bone marrow 

Cyclic hy-
drostatic 

compression 
Agarose gel - Chondrogenic 

Application of 7.5 MPa load at 1Hz fre-
quency (4h/day) for 14 days increased 
chondrogenic markers  after 2 weeks. 

Authors 
Year of 

publication 
Stem cell 

source 
Applied 

load 
Scaffold or 

carrier 

Surface 
treatment 
of scaffold 
or carrier 

Type of 

differentiation 
Results 

Liu et al, (18) 2012 Bone marrow 

Fluid shear 
stress, inter-
rupted/contin

uous 

PLGA and 
fibrin gel - Osteogenic 

Application of interrupted load caused 
osteogenic differentiation of cells. Expres-
sion of osteogenic genes and ALP activity 
were higher in interrupted compared to 
continuous load application. Application of 
interrupted load increased ERK ½ and 
FAK activity. 

Schatti et al, 
(44) 2011 Bone marrow 

Dynamic, 
shear/compre

ssive 

Fibrin/ Polyu-
rethane com-

posite 
- Chondrogenic 

Shear and compressive load alone were 
capable of inducing chondrogenic differen-
tiation but combination of loads signifi-
cantly increased the expression of 
chondrogenic genes. Histological analysis 
revealed that type I collagen and glycosa-
minoglycan were present in the two groups 
receiving only one type of load (shear or 
compressive). 

Yourek et al, 
(56) 2010 Bone marrow Shear - 

With and 
without 

osteogenic 
medium 

Osteogenic 

Immediately after load application ALP 
activity increased in the osteogenic medi-
um under load application. At days 4 and 
8, the mRNA expression related to BMP2 
and osteopontin in the group receiving load 
was higher than the group without load. 

Zhang et al, 
(57) 2009 Bone marrow Shear PET mem-

brane - Myogenic 

By application of shear load with 
90dyn/cm2 intensity, cells expressed 
smooth muscle alpha actin after 24h and 
smooth muscle alpha actin and calponin 
after 48 and 72h. Smooth muscle myosin 
heavy chain was more prominent at 24 and 
less prominent at 72h.  

Knippenber et 
al, (58) 2005 Adipose 

tissue 

Pulsating 
fluid flow 

shear stress 
- - Osteogenic 

A bone cell-like response was shown by 
adipose tissue-derived mesenchymal stem 
cells to fluid shear stress after induction of 
osteogenic differentiation by 1,25-
dihydroxyvitamin D3. Mechanical loading 
increased the production of nitric oxide and 
upregulated cyclooxygenase-2, but not 
cyclooxygenase-1.  

Henrionnet et 
al, (59) 2012 Bone marrow Calibrated 

agitation 3D-alginate - Chondrogenic 

After 28 days of culture, mechanical load 
in the medium without TGF-B resulted in 
formation of types I and II collagen and 
increased the expression of chondrogenic 
markers like COMB and Sox9. 

Li et al, (60) 2010 Bone marrow 

Combination 
of cyclic 

compression 
and surface 
shear stress 

Fibrin-
polyurethane 

composite 
- Chondrogenic 

After 7 days of loading (1h/day) 
chondrogenesis in the group receiving 
mechanical loads was significantly 
higher than in the control group. 

the signals guiding cell differentiation [66]. Some 
authors have shown that covering the substrate sur-

face with extracellular matrix molecules namely 
collagen, fibronectin or laminin improves effective 

Table 3: Studies using shear loads for differentiation of stem cells 
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seating and expansion of cells on the substrate 
[67]. The most commonly used material for surface 
coverage of the substrate was collagen used in 10 
articles.  
Lysine, gelatin, fibronectin, atelocollagen, laminin, 
vitronectin and fibronectin have also been used 
sometimes along with collagen. In 30 articles, sub-
strate was not coated. One study evaluated the ef-
fect of several surface treatments on osteogenic 
differentiation and reported fibronectin and 
laminin to be more effective than others.  
Of the 46 articles evaluated, 2 studies used a com-
bination of loads and growth factors and showed 
that combination of loads with growth factors like 
IGF1 and TGFB increased the expression of mark-
ers. 
Osteogenic, chondrogenic, adipogenic, myogenic, 
tenogenic and neurogenic differentiation of 
mesenchymal stem cells under different in-vitro 
conditions were evaluated. Osteogenic differentia-
tion was the most common type with 25 articles. 
Since bone defects are very common causing a 
significant problem in treatment [3], studies have 
mostly focused on osteoblastic differentiation fol-
lowed by chondrogenic differentiation in 14 cases. 
Odontogenic, tenogenic, myogenic, neurogenic 
and adipogenic differentiations were reported in 1-
2 articles each. 
Use of mechanical loads in tissue engineering re-
quires targeted research to assess and compare the 
effects of dynamic tensile, shear and compressive 
loads with similar frequency and strain on one type 
of stem cells (cultured on a specific scaffold with 
similar surface treatment). By doing so, we can 
find out what force at what frequency and percent-
age of strain will cause the best regeneration of 
tissue. Selection of positive (cells in the desired 
differentiation medium) and negative (cells in a 
conventional medium) control groups in conditions 
completely similar to the treatment group (in con-
ventional medium subjected to load) without the 
load application is very important. In most studies 
evaluated, only one control group was present. As 
long as using scaffolds, cells and protocols of dif-
ferent loads in studies, we cannot determine the 
optimal type of load for each differentiation [68]. 
This study had some limitations: 

1.Only studies on human stem cells were evaluated 
2.This review study evaluated articles by June 
2012 and since then new articles have been added 
to the database. 
3.Only PubMed database was searched and future 
studies are recommended to use several databases.  
 
Conclusion   
Based on the results of studies evaluated, mechani-
cal loads-especially tensile- play an important role 
in differentiation of stem cells to different cell 
lines. Several studies have evaluated application of 
mechanical load to mesenchymal stem cells with 
various degrees of success. However, due to the 
different protocols used, meta-analysis of these 
studies is usually problematic. Studies have differ-
ences in terms of human or animal stem cells, tis-
sue origin of stem cells, type of scaffold used for 
load application, type of applied load and protocol 
of load application. Moreover, in some cases, me-
chanical loads have been used with growth factors 
or differentiation media. These factors are respon-
sible for not obtaining comparable results.  Simu-
lating clinical conditions as much as possible can 
help making a decision regarding the use of me-
chanical loads for tissue engineering. 
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